AEROGEL BASED PRODUCTS FOR THERMAL INSULATION OF BUILDINGS

Prof. Dr. Can Erkey

Department of Chemical and Biological Engineering Koç University Koç University-TÜPRAŞ Energy Center (KUTEM) Istanbul, Turkey

Projections of Residential Energy Consumption in Turkey

Forecasting of Turkey's net electricity energy consumption on sectoral bases Coşkun Hamzaçebi, Energy Policy, 35, 2009 (2007)

Savings of Turkey by Reducing Residential Energy Consumption by 20% by Insulation

1 Barrel of Oil \rightarrow ~\$50

Heat Losses from Windows of Buildings

Ref: Retrieved from http://www.imagingnotes.com (image courtesy of FLIR Systems, Inc.)

Transparent Thermal Insulation Systems

Possible Solutions:

Instead of argon or air,
use a transparent
insulator

•Replace glass with a transparent insulator

Vacuum Insulation Panels

Fumed silica, glass fiber

NOT TRANSPARENT

November 1, 2016

6

Heat Transfer in Porous Materials

- Radiation Scattering at Interfaces and Grain Boundaries
- Recirculatory and Gas Flow Convection

Fundamental Mechanisms of Heat Transfe

Conduction
Convection
Radiation
Coupling Terms

 $\lambda_{total} = \lambda_{conduction} + \lambda_{convection} + \lambda_{radiation} + \lambda_{coupling terms}$

Fundamental Mechanisms of Heat Transfe

$\lambda_{total} = \lambda_{conduction} + \lambda_{co} |_{vection} + \lambda_{radiation} + \lambda_{coi} |_{ling terms}$

FLOW OF THE GAS MOLECULES WITHIN THE PORES ARE SUPPRESSED OWING TO THE FINE PORE SIZES OF THE AEROGEL STRUCTURE **NEGLIGIBLE**

Fundamental Mechanisms of Heat Transfe

 $\lambda_{total} = \lambda_{conduction} + \lambda_{radiation}$

Solid Conduction Gaseous (Knudsen) Conduction Scattering at Interfaces & Grain Boundaries

Solid Conduction

Depends on the structural parameters of the porous material: ≻Density

- ➢Porosity
- ≻Interconnectivity of the pores

Hrubesh et.al. & Fricke et.al.;

$$\lambda_s = \lambda_s^o V_s \left(\frac{\upsilon_p}{\upsilon_d}\right)$$

- λ_s : Solid network conductivity
- λ_s^o : Intrinsic conductivity of network material
- $V_{\rm s}$: Volume fraction of the solid

 \boldsymbol{U}_p , \boldsymbol{U}_d : Sound velocities in porous and dense bodies

Solid Conduction

$$\lambda_{s} = \lambda_{s} V_{s} \left(\frac{\upsilon_{p}}{\upsilon_{d}} \right)$$

Solid conduction can be reduced by:

- reducing the intrinsic conductivity of network material λ_{c}^{o}
- and reducing the volume fraction of the solid V_s (increasing the porosity)

Knudsen equation:

$$\lambda_g = \frac{\lambda_g^o V_g}{\left(1 + \beta K_n\right)}$$

- $\lambda^o_{_{m g}}$: Thermal conductivity of free air
- β : Parameter considering energy transfer

between gas molecules & solid matrix (~2)

- $V_a\,$: Volume fraction of the voids (porosity)
- K_n : Knudsen number

Knudsen number:

$$K_n = \frac{l_g}{\phi}$$

 l_g : Mean free path of gas molecules ϕ : Pore diameter

From Kinetic Theory of Gases:

$$l_g = \frac{k_B T}{\sqrt{2}\pi d_g^2 P}$$

 k_B : Boltzmann constant d_g : Average size of gas molecules T, P: Temperature & Pressure

 λ_g

 $\frac{2.534 \times 10^{-2} V_g}{\left(1 + \frac{140}{\phi}\right)}$

For air at ambient conditions:

$$\lambda_g^o = 2.534 \times 10^{-2} W / mK$$

 $\beta \approx 2$ $K_n = \frac{d}{d}$

For air at ambient conditions:

$$\lambda_g = \frac{2.534 \times 10^{-2} V_g}{\left(1 + \frac{140}{\phi}\right)} \qquad \qquad \lambda_g \approx 1.7 \times 10^{-5} V_g \phi \quad \text{for} \quad \phi << 140 nm$$

Knudsen conduction can be reduced by:

- reducing the average pore size
- reducing the porosity

Radiation: Scattering at Interfaces & Grain Boundaries

Becomes significant for transparent porous materials: affected by the scale of the pore structure

Rosseland approximation:

$$\lambda_r = \frac{16}{3} \frac{\sigma n^2 T^3}{\rho e(T)}$$

- σ : Stephen-Boltzmann constant
 - Density of the material
- e(T) : Mass-specific extinction coefficient
 - *T* : Absolute temperature

Effect of Porosity and Pore Size on Total Thermal Conductivity

Total Thermal Conductivity

Desired material properties for low thermal conductivity:

- Low density
- High porosity
- Small pore sizes

Silica Aerogels & Insulation

Why Silica Aerogels? ✓ monolithic ✓ high porosity (80-99%) ✓ transparent ✓ low density (as low as 3 kg/m³) ✓ pore sizes smaller than 50 nm

AEROGELS ARE PERFECT CANDIDATES FOR TRANSPARENT INSULATION SYSTEMS

OBJECTIVE: DEVELOP AEROGEL BASED TRANSPARENT VACUUM INSULATION PANELS

No.	Beneficiary		Country	Activity in project
1	KINGSPAN	Kingspan.	IE	Project co-ordination. Design of large VIP, pilot plant development and end user
2	PERA	PERA The Innovation Network	UK	Process manufacture/pilot scale up Project management and administration
3	HANITA	Hanita Coatings	IL	Barrier films and VIP production
4	VA-Q-TEC	va-Q-tec	DE	Materials, design of VIP prototype and process development
5	FRAUNHOFER [†]	🗾 Fraunhofer	DE	Transparent and opaque barrier films, characterisation and development, VIP production, simulation and modelling of the building envelope and VIPs
6	KOÇ	KOÇ UNIVERSITY	TR	Development of aerogels and aerogel-polymer composites
7	AIRGLASS	Airglass	SE	Aerogel-polymer composite producers; production of aerogel- polymer composite panels, up- scaling, cost reduction
8	BASF	D = BASF The Chemical Company	DE	Nanofoam development and process up-scaling
9	GAIKER	GAIKER ik4 research aliance	ES	Lifecycle assessment, cost analysis, safety assessment, end-of-life studies
10	ACCIONA	Gacciona Formos en desarrollo y soctembilidad	ES	Component assessment and demonstration in building applications

Synthesis of Aerogels

Effect of Reactant Concentration on Transparency

H₂O/TEOS molar ratios: 2, 4, 8, 10 (constant EtOH/TEOS: 4)

Effect of Reactant Concentration on Transparency

EtOH/TEOS molar ratios

Water/TEOS molar ratios

Effect of Mold Materials on Surface Scattering

- Types of molds
 - Glass
 - Teflon
 - Polypropylene (PP)
 - Plexiglass (polymethylmethacrylate)

Teflon and PP Molds

0 0 œ

Aerogel synthesized in PP mold (1) and in Teflon mold (2)

Drawbacks:

- High surface roughness due to manufacturing
- Manufacturing of large scale Teflon and PP molds is not easy.

One Drawback of Silica Aerogels

✓ Fragile & brittle✓ Poor mechanical properties

WAYS TO IMPROVE MECHANICAL PROPERTIES

AEROGEL COMPOSITES

Typical Approaches to Produce Aerogel Composites with Polymers

- **1.** Blend with the silica network
- 2. Chemically linked to the silica network
- 3. H-bonding with the surface groups
- 4. Entagled within the pore
- 5. Reactive supercritical deposition of polymer

Reactive Supercritical Deposition of PDMS(

Conformal coating of the silica aerogel surface with a thin layer of polymer

Large Scale Production

50x35x2.2 cc plexiglas mold

35 L autoclave vessel

A Large Scale Transparent Silica Aerogel

(d: 0.180 g/mL and λ_T : 16 mW/m.K)

Fig.1: transparent VIP-aerogel

s/cerkey/Desktop/1-s2.0-S1876610215024170-main.pdf

0-main.pdf

1/6

Available online at www.sciencedirect.com

ScienceDirect

Energy Procedia 78 (2015) 412 - 417

Procedia

6th International Building Physics Conference, IBPC 2015

Development of Transparent and Opaque Vacuum Insulation Panels for Energy Efficient Buildings

Esra Kucukpinar^{a,*}, Oliver Miesbauer^a, Yoash Carmi^b, Marc Fricke^c, Leif Gullberg^d, Can Erkey^e, Roland Caps^f, Malcolm Rochefort^g, Araceli Galvez Moreno^h, Clara Delgadoⁱ, Michael Koehl^j, Paul Holdsworth^k, Klaus Noller^a

^aFraunhofer Institute for Process Engineering and Packaging, Freising, 85354, Germany
 ^bHanita Coatings, Kibbutz Hanita, Israel
 ^cBASF Polyurethanes GmbH, Lemfoerde, 49448, Germany
 ^dAirglass AB, Staffanstorp, SE-24522, Sweden
 ^eKoç University, Chemical and Biological Engineering Department, Istanbul, 34450, Turkey
 ⁱya-Q-tec AG, Würzburg, 97080, Germany
 ^gKingspan Insulation Limited, Herefordshire, HR6 9LA, UK
 ⁱAcciona Infraestructuras S.A., Madrid, 28108, Spain
 ⁱGaiker Centro Tecnológico, Bizkaia, 48170, Spain
 ⁱFraunhofer Institute for Solar Energy Systems, Freiburg, 79110, Germany
 ^kPera Innovation Limited, Leicestershire LE13 0PB, United Kingdom

Abstract

One reason for heat losses in buildings is inadequate insulation. Vacuum Insulation Panels (VIPs) is emerging as a promising solution, being more energy efficient than conventional insulation materials, thinner and lighter. A VIP is made by placing a core insulation material inside a gas-barrier envelope and evacuating the air from inside the panel. The limitations to wide-scale VIP commercialization lie in lack of low-cost and high-volume processes to turn them into products suitable for use in buildings, and

Conclusion

- Aerogels are perfect candidates for transparent insulation systems because of their transparency and low thermal conductivity
- Density, porosity and average pore size of the aerogels are the major parameters affecting their thermal conductivity
- EtOH/TEOS and H₂O/TEOS molar ratios and type of the mold used during gelation affect the transparency.
- One drawback of aerogels are their poor mechanical properties which can be improved by incorporation of polymers
- Among various routes, supercritical deposition seems to be promising to to obtain polymer-aerogel composites without losing the transparency

We acknowledge the Financial Support of the NANOINSULATE "Development of Nanotechnology-based High-performance Opaque & Transparent Insulation Systems for Energy-efficient Buildings Project "being funded by the EU Program EeB.NMP.2010-1

35

Thank you...